Data Pipeline
  • Data Pipeline
    • About Data Pipeline
    • Design Philosophy
    • Low Code Visual Authoring
    • Real-time and Batch Orchestration
    • Event based Process Orchestration
    • ML and Data Ops
    • Distributed Compute
    • Fault Tolerant and Auto-recovery
    • Extensibility via Custom Scripting
  • Getting Started
    • Homepage
      • List Pipelines
      • Create
        • Creating a New Pipeline
          • Adding Components to Canvas
          • Connecting Components
            • Events [Kafka and Data Sync]
          • Memory and CPU Allocations
        • Creating a New Job
          • Job Editor Page
          • Task Components
            • Readers
              • HDFS Reader
              • MongoDB Reader
              • DB Reader
              • S3 Reader
              • Azure Blob Reader
              • ES Reader
              • Sandbox Reader
            • Writers
              • HDFS Writer
              • Azure Writer
              • DB Writer
              • ES Writer
              • S3 Writer
              • Sandbox Writer
              • Mongodb Writer
              • Kafka Producer
            • Transformations
          • PySpark Job
          • Python Job
      • List Jobs
      • List Components
      • Delete Orphan Pods
      • Scheduler
      • Data Channel
      • Cluster Event
      • Trash
      • Settings
    • Pipeline Workflow Editor
      • Pipeline Toolbar
        • Pipeline Overview
        • Pipeline Testing
        • Search Component in Pipelines
        • Push Pipeline (to VCS/GIT)
        • Pull Pipeline
        • Full Screen
        • Log Panel
        • Event Panel
        • Activate/Deactivate Pipeline
        • Update Pipeline
        • Failure Analysis
        • Pipeline Monitoring
        • Delete Pipeline
        • Pipeline Component Configuration
        • Pipeline Failure Alert History
      • Component Panel
      • Right-side Panel
    • Testing Suite
    • Activating Pipeline
    • Monitoring Pipeline
    • Job Monitoring
  • Components
    • Adding Components to Workflow
    • Component Architecture
    • Component Base Configuration
    • Resource Configuration
    • Intelligent Scaling
    • Connection Validation
    • Readers
      • S3 Reader
      • HDFS Reader
      • DB Reader
      • ES Reader
      • SFTP Stream Reader
      • SFTP Reader
      • Mongo DB Reader
        • MongoDB Reader Lite (PyMongo Reader)
        • MongoDB Reader
      • Azure Blob Reader
      • Azure Metadata Reader
      • ClickHouse Reader (Docker)
      • Sandbox Reader
      • Azure Blob Reader
    • Writers
      • S3 Writer
      • DB Writer
      • HDFS Writer
      • ES Writer
      • Video Writer
      • Azure Writer
      • ClickHouse Writer (Docker)
      • Sandbox Writer
      • MongoDB Writers
        • MongoDB Writer
        • MongoDB Writer Lite (PyMongo Writer)
    • Machine Learning
      • DSLab Runner
      • AutoML Runner
    • Consumers
      • SFTP Monitor
      • MQTT Consumer
      • Video Stream Consumer
      • Eventhub Subscriber
      • Twitter Scrapper
      • Mongo ChangeStream
      • Rabbit MQ Consumer
      • AWS SNS Monitor
      • Kafka Consumer
      • API Ingestion and Webhook Listener
    • Producers
      • WebSocket Producer
      • Eventhub Publisher
      • EventGrid Producer
      • RabbitMQ Producer
      • Kafka Producer
      • Synthetic Data Generator
    • Transformations
      • SQL Component
      • Dateprep Script Runner
      • File Splitter
      • Rule Splitter
      • Stored Producer Runner
      • Flatten JSON
      • Email Component
      • Pandas Query Component
      • Enrichment Component
      • Mongo Aggregation
      • Data Loss Protection
      • Data Preparation (Docker)
      • Rest Api Component
      • Schema Validator
    • Scripting
      • Script Runner
      • Python Script
        • Keeping Different Versions of the Python Script in VCS
    • Scheduler
  • Custom Components
  • Advance Configuration & Monitoring
    • Configuration
      • Default Component Configuration
      • Logger
    • Data Channel
    • Cluster Events
    • System Component Status
  • Version Control
  • Use Cases
Powered by GitBook
On this page

Was this helpful?

Data Pipeline

Data pipelines are used to ingest and transfer data from different sources, transform unify and cleanse so that it’s suitable for analytics and business reporting.

What is a Data Pipeline?

“It is a collection of procedures that are carried either sequentially or even concurrently when transporting data from one or more sources to destination. Filtering, enriching, cleansing, aggregating, and even making inferences using AI/ML models may be part of these pipelines”.

Data pipelines are the backbone of the modern enterprise, Pipelines move, transform and store data so that enterprise can generate/take decision without delays. Some of these decisions are automated via AI/ML models in real-time.

Automate your entire data workflow

It can handle both Streaming and batch data seamlessly. The Data pipeline offers an extensive list of data processing components that help you automate the entire data workflow, Ingestion, transformations, and running AI/ML models.

Kickstart your Data Processing

In the Data Pipeline plugin, we treat data as events. Data Processing components can listen to events, as data hits those events, the process kick starts automatically. These processes then publish the output to another event. This allows data engineers to chain the process and build large data flows.

Secure Deployment as a Service

BDB Data Pipeline is available as a plugin to the BDB Platform. It can be deployed as a service in customers’ private accounts so that their data remains secure all the time.

Automatic Scaling based on the Data-load needs

There is in-build process scaler reads multiple process-metrics and automatically marks the scale-up or scale-down process. The BDB Pipelines consume data from your data source, transform it, and load it to your destination. You can send the processed data from your warehouse to any marketing, sales, or business application of your choice or vice versa. In-build process scaler reads multiple process-metrics and automatically marks the scale-up or scale-down process.

NextAbout Data Pipeline

Last updated 1 year ago

Was this helpful?

Readers: Your repository of data can be a reader for you. It could be a database, a file, or a SaaS application. Read

Connecting Components: The component that pulls or receives data from your source can be events/ connecting components for you. These Kafka-based messaging channels help to create a data flow. Read

Writers: The databases or data warehouses to which the data is loaded by the Pipelines. Read .

Transforms: The series of transformation components that help to cleanse, enrich, and prepare data for smooth analytics. Read .​

Producers: Producers are the group of components that can be used to produce/generate streaming data to external sources. Read .

Machine Learning: The Model Runner components allow the users to use the models created on R, Python workspace of the Data Science Workbench or saved models from the Data Science Lab to be consumed in a pipeline. Read .​

Consumers: These are the real-time / Streaming component that ingests data or monitor for change in data objects from different sources to the pipeline. Read .​

Readers.
Connecting Components.​
Writers
Transformations
Producers
Machine Learning
Consumers