Data Science Lab
  • What is Data Science Lab?
  • Accessing the Data Science Lab Module
  • Homepage
  • List Projects
  • List Feature Stores
  • Create
    • Create Project
      • Container Status Message
    • Create Feature Store
  • Registered Models and APIs
  • Settings
  • Trash
  • Tabs for a DSL Project
    • Workspace
      • Workspace Folders
        • Repo Folder Attributes
          • Notebook Actions
            • Export
            • Register as Job
            • Notebook Version Control
            • Share
            • Delete
            • Information
        • Repo Folder Attributes for a Repo Sync Project
          • File Attributives
        • Utils Folder Attributes
          • Utility Actions
        • Files Attributes
      • Working with the Workspace tab
        • Create
        • Import
          • Importing Notebook
          • Pull from Git
        • Adding File and Folders
      • Linter
      • Git Console
    • Data
      • Adding Data
      • Data List Page
    • Model
      • Import Model
      • Explainer Generator
      • Export to GIT/ Model Migration
      • Model Explainer
      • Share a Model
      • Register a Model
      • Unregister a Model
      • Register a Model as an API Service
        • Register a Model as an API
        • Register an API Client
        • Pass Model Values in Postman
      • Delete Model
    • AutoML
      • Creating AutoML Experiment
      • AutoML List Page
        • View Explanation
          • Model Summary
          • Model Interpretation
            • Classification Model Explainer
            • Regression Model Explainer
            • Forecasting Model Explainer
          • Dataset Explainer
  • Data Science Notebook
    • Preview File
    • Save as Notebook
    • .ipynb File Cells
      • Using a Code Cell
      • Using a Markdown Cell
      • Using an Assist Cell
    • Resource Utilization Graph
    • Taskbar
    • Actions Icons
  • Model Creation using Data Science Notebook
  • Notebook Operations
    • Data
      • Copy Path Functionality
    • Secrets
    • Algorithms
    • Transforms
    • Artifacts
    • Variable Explorer
    • Writers
Powered by GitBook
On this page
  1. Tabs for a DSL Project
  2. AutoML
  3. AutoML List Page
  4. View Explanation

Model Interpretation

The user is taken to a dashboard upon clicking Model Explainer to gather insights and explanations about predictions made by the selected AutoML model.

Model interpretation techniques like SHAP values, permutation importance, and partial dependence plots are essential for understanding how a model arrives at its predictions. They shed light on which features are most influential and how they contribute to each prediction, offering transparency and insights into model behavior. These methods also help detect biases and errors, making machine learning models more trustworthy and interpretable to stakeholders. By leveraging model explainers, organizations can ensure that their AI systems are accountable and aligned with their goals and values.

Please Note: The user can access the Model Explainer Dashboard under the Model Interpretation page only.

PreviousModel SummaryNextClassification Model Explainer

Last updated 1 year ago