Data Center
  • Data Center
    • Homepage
    • Data Connectors
      • Create Data Connector
      • Data Connector List
        • Edit Data Connectors
        • Create Option
        • Reconnecting to a Data Connector
        • Sharing a Data Connector
        • Delete a Data Connector
      • Supported Data Connectors
        • Database Connectors
          • MySQL
          • MSSQL
          • Elastic (Beta Release)
          • Oracle
          • ClickHouse
          • Athena
          • Arango DB
          • Hive
          • Cassandra
          • MongoDB
          • MongoDB for BI
          • PostgreSQL
          • Snowflake
        • File Data Connector
        • API Connectors
          • API Connector
          • Amazon
          • App Store
          • Bing Ads
          • Dropbox
          • FTP Server
          • Facebook
          • Facebook Ads
          • Firebase DB
          • Fitbit
          • Flipkart
          • Google AdWords
          • Google Analytics
          • Google Big Query
          • Google Forms
          • Google Sheet
          • HubSpot
          • Jira
          • Lead Squared
          • Linkedin
          • Linkedin Ads
          • MS Dynamics
          • Mailchimp
          • QuickBooks
          • SalesForce
          • ServiceNow
          • Twitter
          • Twitter Ads
          • Yelp
          • YouTube
          • ZOHO Books
        • Others
          • MS Sql Olap
          • Data Store
          • OData
          • Spark SQL
          • AWS Redshift
          • SAP HANA
    • Data Sets
      • Creating a New Data Set
        • Creating a New Data Set using RDBMS Connector
        • Creating a Data Set using Arango DB Connector
        • Creating a Data Set using an API Connector
        • Creating a New FTP Data Set
        • Creating a Data Set based on an Elastic Connector
      • Data Set List
        • View Options: Data Sets List Page
        • Data Set List: Actions
          • Editing a Data Set
          • Sharing a Data Set
          • Publishing a Data Set
          • Push to VCS
          • Pull from VCS
          • Deleting a Data Set
          • Data Preparation
    • Data Stores
      • Creating a New Data Store
        • Data Store using an RDBMS Connector
        • Data Store using an API Data Connector
      • Data Stores List
        • Edit a Data Store
        • Refresh Data for a Data Store
        • Store Info
        • Sharing a Data Store
        • Adding Synonyms to a Data Store
        • Refresh Synonyms
        • Push to VCS
        • Pull from VCS
        • Delete a Data Store
    • Data Store Meta Data
      • Creating a New Meta Data Store
      • Data Store Meta Data List
        • Editing Meta Data Store
        • Store Details
        • Adding Synonyms to Meta Data Store
        • Refresh Synonyms
        • Sharing a Metadata Store
        • Deleting Meta Data Store
    • Data Sheets
      • Creating a New Data Sheet
      • Editing a Data Sheet
      • Publishing a Data Sheet
        • Entering Data
        • Applying Filter
        • Deleting a Row
      • Removing a Data Sheet
    • Data Sandbox
      • Creating a New Data Sandbox
      • Data Sandbox List
        • Upload File Status
        • Using the Data Preparation Option
        • Deleting a Data Sandbox
        • Create Data Store
        • Reupload
        • Preview
        • Create Datasheet
    • Data as API
    • Data Preparation
      • Accessing the Data Preparation Option
      • Data Preparation Workspace
        • Data Preparation Landing Page
        • Profile Tab
        • Transforms
          • Advanced
          • Anonymization
          • Columns
          • Conversions
          • Data Cleansing
          • Dates
          • Functions
          • Integer
          • ML
          • Numbers
          • String
        • Steps
      • Data Preparation List
        • Rename
        • Edit
        • Delete
Powered by GitBook
On this page
  • Getting Data
  • Data Type Definition
  • Hierarchy Definition
  • Batch Query
  • Data Restrictions
  • Scheduling Data Refresh
  1. Data Center
  2. Data Stores
  3. Creating a New Data Store

Data Store using an RDBMS Connector

This page helps to understand the Data Store creation flow with the RDBMS Data Connector.

PreviousCreating a New Data StoreNextData Store using an API Data Connector

Last updated 9 months ago

Check out the illustration on the creation of Data Store.

Getting Data

  • The Getting Data tab opens by default while clicking the Create Data Store option.

  • Enter a name for the Data Store. The Data Connector and Database names are displayed based on the selection of the data connector.

  • Provide Description for the Data Store.

  • Write the SQL query in the given space (Use the Ctrl+ Space keys for assistance in writing a query.

  • Put a checkmark in the given box to use the Enable Scheduler option.

  • Click the Next option to proceed.

Data Type Definition

Users can define the data type using the selected data store. They can interchange the Dimensions, Measures, and Time fields by selecting the respective icons provided for these fields.

  • Navigate to the Data Type Definition tab.

  • Define the required Dimensions, Measures, and Time by interchanging the categories.

  • Enable the Dimensions by using a checkmark to avail List of Values (LOV) lookup in the filter panel of the Report.

  • Click the Next option to proceed.

The user can change the categories of a dimension, measure, and time values by clicking the following options:

Icons

Name

Description

Move to Dimensions

Moves the selected ?Measure or Time element to Dimension category.

Move to Measures

Moves the selected Dimension or Time element to Measure category.

Move to Time

Moves the selected Dimension or Measure to Time category/

Please Note: Click the Previous option to access the previous tab.

Hierarchy Definition

Define the hierarchy using various dimensions and time options.

  • Navigate to the Hierarchy Definition tab.

  • Click the Add option provided on the Hierarchy Definition page.

  • A new Drill Def box gets added.

  • Drag and drop the dimensions or time options to define a hierarchy.

    • The Time fields get separated in the 3-level granularity by dragging one time. By default, the Time dimensions can be split into Year>Month>Date hierarchy.

    • The Dimension fields must be dragged separately each time to create the hierarchy in the Drill Def box.

  • Click the Next tab to proceed.

Please Note:

  • Click the Previous option to go back to the previous tab.

  • Click the Remove option (in the Drill Def box) to remove the defined hierarchy using the selected option.

Batch Query

Split the data fetching process into different batches by generating a batch query.

  • Navigate to the Batch Query tab.

  • Select a Dimension using the drop-down menu.

  • Click the Generate option.

  • Based on the selected dimension, a distinct query gets generated (in the below-given box). The user can edit the distinct query as per their requirement.

  • Click the Generate option provided for the Batch Query option.

  • The original query generates the distinct query specifications to fetch data.

  • Proceed to the next tab by clicking the Next tab.

Please Note:

  • The Batch Query does not get generated automatically for the Data stores based on the MongoDB, the users need to write the batch query in the given Batch Query space. The sample Distinct Query and Batch Query examples are provided below.

  • The Batch Query page contains a Help Center option to get Instructions on how to write a Batch Query for the MongoDB.

Mongo Distinct Query Example
db.table.aggregate([
    {
        '$group': {
            '_id': '$transmissionType'
        }
    }, {
        '$project': {
            '_id': 0, 
            'transmissionType': '$_id'
        }
    }
])
Mongo Batch Query Example
db.testdata.aggregate(db.testdata.aggregate([
                                   {
        '$project': {
            '_id': 0
        }
    },{"$match":{"transmissionType":?}}
]))
db.testdata.aggregate([
    {
        "$project": {
            "_id": 0
        }
    }
])
Help Center option for MongoDB Batch Query
  • Navigate to the Batch Query tab.

  • Click the Help Center icon.

  • The Instructions window opens displaying the Distinct Query and Batch Query examples for a Mongo DB based Data Store.

    Distinct Query

Batch Query

Data Restrictions

Configure the Data Restrictions settings to restrict a user-level view of the data store.

  • Navigate to the Data Restriction tab.

  • Click the Add icon to add a new box for inserting the data restriction parameter.

  • Select a dimension from the drop-down menu.

  • Enter the user/group-specific custom field to restrict the data.

  • Click the Next option to proceed.

Please Note: The Administrator can restrict data access for specific users by configuring the User Property via the Data Restriction tab. For instance, if a custom field 'Country' is set to 'India' for a user or user group, and the administrator uses this field while creating a data store, only those users can access data related to India.

Scheduling Data Refresh

The user can schedule a data refresh interval via the Schedule Data Refresh tab.

  • Navigate to the Schedule Data Refresh tab. (This tab only appears for the Data Stores where the scheduler has been enabled using the Getting Data tab).

  • Define a time range to refresh data using the following options:

    • Hourly

    • Daily (default option)

    • Weekly

    • Monthly

    • Yearly

    (Select any one option from the above-given list to set the data refresh interval)

  • Enable the Refresh Now option by using a checkmark in the given box.

  • Enable the Email Notification option by providing a checkmark in the box.

    • Provide a valid email address to receive the notification email regarding the Data Store.

  • Click the Finish option to complete the Data Store creation process.

  • A message appears to confirm that the data store configuration has been saved.

  • The Data Stores List opens.

  • A new Data Store gets created and added to the displayed list.

Icon

Name

Task

View/Edit

Opens the Data Store in editable format the datastore fields.

Refresh Data

Refreshes data for a datastore.

Latest Scheduled Status

Displays the latest scheduler status via a pop-up window.

Share Data

Shares a datastore to/for the selected user(s) or group(s).

Add Synonyms to Data Store

Adds more synonyms to a Data Store.

Refresh Synonyms

Refreshes Synonyms for the selected Data Store.

Push to VCS

Pushes the Data Store to the GIT repository.

Pull From VCS

Pulls the Data Store to the GIT repository.

Delete

Deletes the selected Data Store.

Visualize

Redirects the user to Widget Visualizer page.

​​

​​

​​

​​

​​

​​

Configuring the Getting Data tab
Configuring the Data Type Definition tab
Configuring the Hierarchy Definition tab
Generating Distinct Query
Generating the Batch Query
Configuring the Data Restrictions tab
Configuring the Schedule Refresh tab
New Data Store gets added to the Data Stores List