Data Center
  • Data Center
    • Homepage
    • Data Connectors
      • Create Data Connector
      • Data Connector List
        • Edit Data Connectors
        • Create Option
        • Reconnecting to a Data Connector
        • Sharing a Data Connector
        • Delete a Data Connector
      • Supported Data Connectors
        • Database Connectors
          • MySQL
          • MSSQL
          • Elastic (Beta Release)
          • Oracle
          • ClickHouse
          • Athena
          • Arango DB
          • Hive
          • Cassandra
          • MongoDB
          • MongoDB for BI
          • PostgreSQL
          • Snowflake
          • Pinot
        • File Data Connector
        • API Connectors
          • API Connector
          • Amazon
          • App Store
          • Bing Ads
          • Dropbox
          • FTP Server
          • Facebook
          • Facebook Ads
          • Firebase DB
          • Fitbit
          • Flipkart
          • Google AdWords
          • Google Analytics
          • Google Big Query
          • Google Forms
          • Google Sheet
          • HubSpot
          • Jira
          • Lead Squared
          • Linkedin
          • Linkedin Ads
          • MS Dynamics
          • Mailchimp
          • QuickBooks
          • SalesForce
          • ServiceNow
          • Twitter
          • Twitter Ads
          • Yelp
          • YouTube
          • ZOHO Books
        • Others
          • MS Sql Olap
          • Data Store
          • OData
          • Spark SQL
          • AWS Redshift
          • SAP HANA
    • Data Sets
      • Creating a New Data Set
        • Creating a New Data Set using RDBMS Connector
        • Creating a Data Set using Arango DB Connector
        • Creating a Data Set using the Pinot DB Connector
        • Creating a Data Set using an API Connector
        • Creating a New FTP Data Set
        • Creating a Data Set based on an Elastic Connector
      • Data Set List
        • View Options: Data Sets List Page
        • Data Set List: Actions
          • Reset Filter Option
          • Editing a Data Set
          • Sharing a Data Set
          • Publishing a Data Set
          • Push to VCS
          • Pull from VCS
          • Deleting a Data Set
          • Data Preparation
    • Data Stores
      • Creating a New Data Store
        • Data Store using an RDBMS Connector
        • Data Store using an API Data Connector
      • Data Stores List
        • Edit a Data Store
        • Refresh Data for a Data Store
        • Store Info
        • Sharing a Data Store
        • Adding Synonyms to a Data Store
        • Refresh Synonyms
        • Push to VCS
        • Pull from VCS
        • Delete a Data Store
    • Data Store Meta Data
      • Creating a New Meta Data Store
      • Data Store Meta Data List
        • Editing Meta Data Store
        • Store Details
        • Adding Synonyms to Meta Data Store
        • Refresh Synonyms
        • Sharing a Data Store Metadata
        • Deleting Meta Data Store
    • Data Sheets
      • Creating a New Data Sheet
      • Editing a Data Sheet
      • Refresh Data
      • Data Sheet Info
      • Publishing a Data Sheet
        • Entering Data
        • Applying Filter
        • Deleting a Row
      • Removing a Data Sheet
    • Data Sandbox
      • Creating a New Data Sandbox
      • Data Sandbox List
        • Upload File Status
        • Using the Data Preparation Option
        • Deleting a Data Sandbox
        • Create Data Store
        • Reupload
        • Preview
        • Create Datasheet
    • Data as API
    • Data Preparation
      • Accessing the Data Preparation Option
      • Data Preparation Workspace
        • Data Preparation Landing Page
        • Profile Tab
        • Transforms
          • Advanced
          • Anonymization
          • Columns
          • Conversions
          • Data Cleansing
          • Dates
          • Functions
          • Integer
          • ML
          • Numbers
          • String
        • Steps
      • Data Preparation List
        • Rename
        • Edit
        • Delete
Powered by GitBook
On this page
  • Data Hashing
  • Data Masking
  • Data Variance
  • Applying the Data Variance transform to a Number Column
  • Applying the Data Variance transform to a Date Column
  • Hashing Anonymization (using Salt and Pepper technique)
Export as PDF
  1. Data Center
  2. Data Preparation
  3. Data Preparation Workspace
  4. Transforms

Anonymization

PreviousAdvancedNextColumns

Last updated 3 months ago

Anonymization is a type of information sanitization whose intent is privacy protection. It is a data processing technique that removes or modifies personally identifiable information.

The below-mentioned transforms are available under the Dates category:

Data Hashing

Data Hashing is a technique of using an algorithm to map data of any size to a fixed length. Every hash value is unique.

Data Hashing is a data transformation technique used to convert raw data into a fixed-length representation in the form of a hash value. This transformation is often employed as part of the data preprocessing stage before using the data for various purposes such as analysis, machine learning, or storage. The main objective of data hashing as a data transform is to provide a more efficient and secure way to handle and process sensitive or large datasets.

Check out the given illustration on how to use Data Hashing transform.

Steps to perform the Anonymization Transform:

  • Navigate to a dataset within the Data Preparation framework, and select a column.

  • Select one column that needs to be protected.

  • Select the Transforms tab.

  • Select the Data Hashing transform from the Anonymization category.

  • The Data Hasing window opens.

  • Use the drop-down menu to get the available hashing options.

  • Select a Hash option (E.g., Sha2 hash option has been selected).

  • Set the Hash Value using the drop-down menu. The default Hash Value is 256 for the Sha2 hash option.

  • Click the Submit option.

  • Data in the selected column will be transformed using the hashed format.

Please Note:

  • A suitable hashing algorithm is chosen based on the specific requirements and security considerations as Hash Options. The supported Hash options are Hash, Sha-1, Sha-2, and MD-5.

  • The hash options displayed in the UI map to the following actual hashing algorithms on the backend:

    • Sha1 (UI) → SHA-256 (Backend)

    • Sha2 (UI) → SHA-512 (Backend)

    • Hash (UI) → MD-5 (Backend)

    • MD5 (UI) → MD-5 (Backend)

Data Hashing with Sha1 Hash Option
  • Select a column from the given dataset within the Data Preparation framework.

  • Open the Transforms tab.

  • Select the Data Hashing transform from the ANONYMIZATION category.

  • Select a column from data grid for transformation.

  • Select Sha1 as Hash Option.

  • Click the Submit option.

  • The selected column gets converted based on the hashing option.

Data Hashing with Sha2 Hash Option
  • Select a column from the given dataset within the Data Preparation framework.

  • Open the Transforms tab.

  • Select the Data Hashing transform from the ANONYMIZATION category.

  • Select a column from data grid for transformation.

  • Select Sha2 as Hash Option.

  • Select a Hash Value from the drop-down (The supported values are 256, 384, and 512).

  • Click the Submit option.

  • The selected column gets converted based on the hashing option.

Data Hashing with MD5 Hash Option
  • Select a column from the given dataset within the Data Preparation framework.

  • Open the Transforms tab.

  • Select the Data Hashing transform from the ANONYMIZATION category.

  • Select a column from data grid for transformation.

  • Select MD5 as Hash Option.

  • Click the Submit option.

  • The selected column gets converted based on the hashing option.

Data Masking

Data masking transform is the process of hiding original data with modified content. It is a method of creating a structurally similar but inauthentic version of actual data.

Check out the given walk-through on the Data Masking transform.

Steps to perform the Data Masking Transform:

  • Navigate to a dataset within the Data Preparation framework, and select a column.

  • Select one column that needs to be protected.

  • Select the Transforms tab.

  • Select the Data Masking transform from the Anonymization category.

  • The Data Masking dialog box opens.

  • Provide the Start Index and End Index to mask the selected data.

  • Click the Submit option.

  • The image displays how the Data Masking transform (when applied to the selected dataset) converts the selected data:​

Data Variance

The Data Variance transform allows the users to apply data variance to the Numeric and Date columns.

Applying the Data Variance transform to a Number Column

Check out the illustration on how to use the Data Variance on a numeric column.

  • Select a numeric column within the Data Preparation framework.

  • Open the Transforms tab.

  • Select the Data Variance transform from the Anonymization category.

  • The Data Variance dialog box opens.

  • Configure the following information:

    • Select Numeric as the Value Type.

    • Select an Operator using the drop-down option.

    • Set percentage.

    • Provide a comment in the given section.

  • Click the Submit option.​

  • The data of the selected column gets transformed based on the set of numeric values.

Applying the Data Variance transform to a Date Column

Check out the illustration on how to use the Data Variance on a date column.

  • Select a column containing Date values from the given dataset within the Data Preparation framework.

  • Open the Transforms tab.

  • Select the Data Variance transform from the Anonymization category.

  • The Data Variance dialog box opens.

  • Configure the following information:

    • Select Date as the Value Type.

    • Select an Input Format from the drop-down list.

    • Select a Start Date using the Calendar option.

    • Select an End Date using the Calendar option.

    • Provide a comment in the given section.

  • Click the Submit option.​

  • The selected Date column will display random dates from the selected date range.

Please Note: The Data Variance transform also provides space to add description while configuring the transformation information.

Hashing Anonymization (using Salt and Pepper technique)

This transformation using the Salt and Pepper technique is a method to protect sensitive data by introducing random noise or fake data points into a dataset while preserving its statistical properties.

Check out the illustration on the Hashing Anonymization transform.

  • Navigate to a dataset within the Data Preparation framework, and select a column.

  • Select one column that needs to be protected.

  • Select the Transforms tab.

  • Select the Hashing Anonymization (using salt & pepper technique) transform from the Anonymization category.

  • The Hashing Anonymization (Using the salt & pepper technique) dialog window opens.

  • Provide a value using the Set Values space.

  • Select a field using the Set Fields drop-down menu.

  • Select a hashing option using the Hash Option drop-down menu.

  • Click the Submit option.

  • The target column data will be displayed after applying the selected hashing option.

Please Note:

  1. The first user-provided value (entered in the "Set Values" field) acts as the pepper.

  2. Selected column values will act as the salt.

  3. The hash options displayed in the UI map to the following actual hashing algorithms on the backend:

    1. Sha1 (UI) → SHA-256 (Backend)

    2. Sha2 (UI) → SHA-512 (Backend)

    3. Hash (UI) → MD-5 (Backend)

    4. MD5 (UI) → MD-5 (Backend)

Anonymization Transform
Data Variance on a Numeric column
Data Masking
Hasing Anonymization (using Salt and Pepper Technique)
Data Variance Transform on a Date Column