Data Pipeline
  • Data Pipeline
    • About Data Pipeline
    • Design Philosophy
    • Low Code Visual Authoring
    • Real-time and Batch Orchestration
    • Event based Process Orchestration
    • ML and Data Ops
    • Distributed Compute
    • Fault Tolerant and Auto-recovery
    • Extensibility via Custom Scripting
  • Getting Started
    • Homepage
      • Create
        • Creating a New Pipeline
          • Adding Components to Canvas
          • Connecting Components
            • Events [Kafka and Data Sync]
          • Memory and CPU Allocations
        • Creating a New Job
          • Job Editor Page
          • Spark Job
            • Readers
              • HDFS Reader
              • MongoDB Reader
              • DB Reader
              • S3 Reader
              • Azure Blob Reader
              • ES Reader
              • Sandbox Reader
              • Athena Query Executer
            • Writers
              • HDFS Writer
              • Azure Writer
              • DB Writer
              • ES Writer
              • S3 Writer
              • Sandbox Writer
              • Mongodb Writer
              • Kafka Producer
            • Transformations
          • PySpark Job
          • Python Job
          • Python Job(On demand)
          • Script Executer Job
          • Job Alerts
        • Register as Job
        • Exporting a Script From Data Science Lab
        • Utility
        • Git Sync
      • Overview
        • Jobs
        • Pipeline
      • List Jobs
      • List Pipelines
      • Scheduler
      • Data Channel & Cluster Events
      • Trash
      • Settings
    • Pipeline Workflow Editor
      • Pipeline Toolbar
        • Pipeline Overview
        • Pipeline Testing
        • Search Component in Pipelines
        • Push & Pull Pipeline
        • Pull Pipeline
        • Full Screen
        • Log Panel
        • Event Panel
        • Activate/Deactivate Pipeline
        • Update Pipeline
        • Failure Analysis
        • Delete Pipeline
        • Pipeline Component Configuration
        • Pipeline Failure Alert History
        • Format Flowchart
        • Zoom In/Zoom Out
        • Update Component Version
      • Component Panel
      • Right-side Panel
    • Testing Suite
    • Activating Pipeline
    • Pipeline Monitoring
    • Job Monitoring
  • Components
    • Adding Components to Workflow
    • Component Architecture
    • Component Base Configuration
    • Resource Configuration
    • Intelligent Scaling
    • Connection Validation
    • Readers
      • GCS Reader
      • S3 Reader
      • HDFS Reader
      • DB Reader
      • ES Reader
      • SFTP Stream Reader
      • SFTP Reader
      • Mongo DB Reader
        • MongoDB Reader Lite (PyMongo Reader)
        • MongoDB Reader
      • Azure Blob Reader
      • Azure Metadata Reader
      • ClickHouse Reader (Docker)
      • Sandbox Reader
      • Azure Blob Reader (Docker)
      • Athena Query Executer
    • Writers
      • S3 Writer
      • DB Writer
      • HDFS Writer
      • ES Writer
      • Video Writer
      • Azure Writer
      • ClickHouse Writer (Docker)
      • Sandbox Writer
      • MongoDB Writers
        • MongoDB Writer
        • MongoDB Writer Lite (PyMongo Writer)
    • Machine Learning
      • DSLab Runner
      • AutoML Runner
    • Consumers
      • GCS Monitor
      • Sqoop Executer
      • OPC UA
      • SFTP Monitor
      • MQTT Consumer
      • Video Stream Consumer
      • Eventhub Subscriber
      • Twitter Scrapper
      • Mongo ChangeStream
      • Rabbit MQ Consumer
      • AWS SNS Monitor
      • Kafka Consumer
      • API Ingestion and Webhook Listener
    • Producers
      • WebSocket Producer
      • Eventhub Publisher
      • EventGrid Producer
      • RabbitMQ Producer
      • Kafka Producer
      • Synthetic Data Generator
    • Transformations
      • SQL Component
      • File Splitter
      • Rule Splitter
      • Stored Producer Runner
      • Flatten JSON
      • Pandas Query Component
      • Enrichment Component
      • Mongo Aggregation
      • Data Loss Protection
      • Data Preparation (Docker)
      • Rest Api Component
      • Schema Validator
    • Scripting
      • Script Runner
      • Python Script
        • Keeping Different Versions of the Python Script in VCS
    • Scheduler
    • Alerts
      • Alerts
      • Email Component
    • Job Trigger
  • Custom Components
  • Advance Configuration & Monitoring
    • Configuration
      • Default Component Configuration
      • Logger
    • Data Channel
    • Cluster Events
    • System Component Status
  • Version Control
  • Use Cases
Powered by GitBook
On this page
  1. Getting Started
  2. Pipeline Workflow Editor
  3. Pipeline Toolbar

Pipeline Overview

This page provides an overview of all the components used in the pipeline in a single place.

PreviousPipeline ToolbarNextPipeline Testing

The Pipeline Overview feature enables users to view and download comprehensive information about all the components used in the selected pipeline on a single page. Users can access meta information, resource configuration, and other details directly from the pipeline overview page, streamlining the process of understanding and managing the components associated with the pipeline.

Check out the given demonstration to understand the Pipeline Overview page.

The user can access the Pipeline Overview page by clicking the Pipeline Overview icon as shown in the below given image:

There are following options on the pipeline overview page:

  • Component List: All the components used in the pipeline will be listed here.

  • Creation Date: Date and time when the pipeline created.

  • Download: The Download option enables users to download all the information related to the pipeline. This comprehensive download includes details such as all components used in the pipeline, meta information, resource configuration, component deployment type, and more.

  • Edit: The Edit option allows users to customize the downloaded information by excluding specific components as needed.

  • In the pipeline overview page, components are listed based on their hierarchical level, denoted by Levels 0 and 1. A component at level 1 indicates a dependency on the data from the preceding component, where the previous component serves as the Parent Component. For components without dependencies, designated as Level 0, their Parent Component is set to None, signifying no connection to any previous component in the pipeline.

Pipeline overview
Accessing pipeline overview from pipeline workflow editor