Box Plot

A Box Plot (also known as a Whisker Plot) is a statistical chart that displays the distribution of a dataset based on five key summary metrics:

  • Minimum (Min)

  • First Quartile (Q1)

  • Median (Q2)

  • Third Quartile (Q3)

  • Maximum (Max)

The chart also highlights outliers beyond the whiskers, making it an effective tool for identifying variability, spread, and anomalies within the data.

For example, a Box Plot can show the distribution of exam scores across different student groups, helping identify performance ranges and extreme values.

Best Situations to Use

Use a Box Plot chart when you want to:

  • Show distributions of numeric data across one or more categories.

  • Compare multiple groups (e.g., Male vs. Female scores, Region A vs. Region B).

  • Identify variability within groups, including outliers.

  • Highlight skewness or spread in data values.

Variations

  • Letter-Value Plots: An extension of the standard Box Plot that uses multiple nested boxes to enclose progressively larger portions of the dataset. Useful for very large datasets.

  • Violin Plots: Combines Box Plot with a density curve to provide richer insights into the distribution shape.

Properties of the Box Plot Chart

General

  • Component Name: Unique identifier for the chart.

  • Left / Top: Position of the chart on the canvas.

  • Height / Width: Chart dimensions.

  • Initial Visibility: Toggle chart visibility on first render.

  • Max Button: Enable a maximize option.

  • Fill Colors: Configure fill colors for box areas.

  • Stroke Color: Define outline/border color for elements.

Background

  • Gradient Rotation: Adjust background gradient angle.

  • Opacity: Control transparency.

  • Gradient: Select gradient type and direction.

  • Border / Border Color / Border Radius: Configure chart border style, color, and corner curvature.

  • Shadow / Shadow Color / Transparency: Add drop shadow with custom settings.

Tooltip

  • Show Tool Tip: Enable or disable tooltips.

  • Configuration:

    • Background Color

    • Opacity

    • Border Color

    • Font Size

    • Box Width

    • Precision (decimal places for values)

Title & Sub-Title

  • Show Title Box: Toggle visibility of title container.

  • Title Settings: Font, size, style, weight, family, alignment, decoration.

  • Title Bar Height: Adjust height.

  • Description: Add explanatory text.

  • Dataset Description: Option to populate from mapped dataset.

  • Sub-Title: Similar customization for sub-title text.

Axis Configuration

X-Axis

  • Show / Hide axis line.

  • Axis Line Color.

  • Label settings: font color, size, weight, family, style, decoration, rotation, tilt.

  • Axis description text.

  • Category Tick Marks & Marker Color.

  • Show Dataset Description.

Y-Axis

  • Similar settings as X-axis: line visibility, label configuration, description, dataset description.

Legend

  • Show Legend: Toggle legend visibility.

  • Font Properties: Customize color, size, weight, family, style, and decoration.

  • Hide on Load: Optionally hide legend at chart load.

Formatter

  • Unit: Define measurement unit.

  • Precision: Decimal places for numeric values.

  • Currency: Format numbers as currency with appropriate symbol.

  • Position: Place currency/unit before or after values.

  • Number Formatter: Choose International or Indian numeric format.

Axis Setup

  • Auto Axis Setup: Automatically adjust axis ranges.

  • Base Zero: Start axis at zero for consistency.

  • Min / Max Value: Set custom axis ranges.

  • Reference Lines: Add horizontal/vertical/zero marker lines.

  • Zero Marker Color: Customize baseline marker color.

  • Opacity: Adjust transparency for markers/axes.

Export Options

  • Context Menu: Enable export via right-click.

  • Supported Formats: Excel (.xlsx), CSV (.csv), JPEG (.jpg), PNG (.png), PPTX (.pptx), PDF (.pdf).

  • Print Option: Directly print chart.

  • Export Metadata: Add custom heading, subheading, filename.

  • Global Export Type: Choose default export style (Screenshot or Tabular).

Dataset Properties

When configuring a Box Plot:

  • Category: e.g., Gender.

  • Subcategory: e.g., Grade.

  • Metrics: Map numerical values such as Min, Max, Q1, Median, Q3.

Additional support for:

  • Outlier Properties: Configure visual style for outliers.

Example

Using the sample dataset:

  • Category: Gender

  • Subcategory: Grade

  • Values: Map Min → Min field, Max → Max field, and Quartiles → Q1, Median, Q3 fields.

This produces a Box Plot highlighting score distributions for different categories, including outliers.