Data Science Lab
  • What is Data Science Lab?
  • Accessing the Data Science Lab Module
  • Data Science Lab Quick Start Flow
  • Project
    • Environments
    • Creating a Project
    • Project List
      • Keep Multiple Versions of a Project
      • Sharing a Project
      • Editing a Project
      • Activating a Project
      • Deactivating a Project
      • Deleting a Project
    • Tabs for a Data Science Lab Project
      • Tabs for TensorFlow and PyTorch Environment
        • Notebook
          • Ways to Access Notebook
            • Creating a Notebook
            • Uploading a Notebook
          • Notebook Page
            • Preview Notebook
            • Notebook Cells
              • Using a Code Cell
              • Using a Markdown Cell
            • Modifying a Notebook
            • Resource Utilization Graph
            • Notebook Taskbar
            • Notebook Operations
              • Datasets
                • Copy Path (for Sandbox files)
              • Secrets
              • Algorithms
              • Transforms
              • Models
                • Model Explainer
                • Registering & Unregistering a Model
                • Applying Filter
              • Predict
              • Artifacts
              • Variable Explorer
              • Find and Replace
          • Notebook List Page
            • Export
              • Export to Pipeline
              • Export to GIT
            • Notebook Version Control
            • Sharing a Notebook
            • Editing a Notebook
            • Deleting a Notebook
        • Dataset
          • Adding Data Sets
            • Data Sets
            • Data Sandbox
          • Dataset List Page
            • Preview
            • Data Profile
            • Create Experiment
            • Data Preparation
            • Delete
        • Utility
        • Model
          • Model Explainer
          • Import Model
          • Export to GIT
          • Register a Model
          • Unregister A Model
          • Register a Model as an API Service
            • Register a Model as an API
            • Register an API Client
            • Pass Model Values in Postman
          • AutoML Models
        • Auto ML
          • Creating Experiments
            • Accessing the Create Experiment Option
              • Configure
              • Select Experiment Type
          • AutoML List Page
            • View Report
              • Details
              • Models
                • View Explanation
                  • Model Summary
                  • Model Interpretation
                    • Classification Model Explainer
                    • Regression Model Explainer
                  • Dataset Explainer
            • Delete
      • Tabs for PySpark Environment
        • Notebook
          • Ways to Access Notebook
            • Creating a Notebook
            • Uploading a Notebook
          • Notebook Page
            • Preview Notebook
            • Notebook Cells
              • Using a Code Cell
              • Using a Markdown Cell
            • Modifying a Notebook
            • Resource Utilization Graph
            • Notebook Taskbar
            • Notebook Operations
              • Datasets
                • Copy Path (for Sandbox files)
              • Secrets
              • Variable Explorer
              • Find and Replace
          • Notebook List Page
            • Export
              • Export to Pipeline
              • Export to GIT
            • Notebook Version Control
            • Sharing a Notebook
            • Editing a Notebook
            • Deleting a Notebook
        • Dataset
          • Adding Data Sets
          • Dataset List Page
            • Preview
            • Data Profile
            • Data Preparation
            • Delete
        • Utility
Powered by GitBook
On this page
  1. Project
  2. Tabs for a Data Science Lab Project
  3. Tabs for TensorFlow and PyTorch Environment
  4. Notebook
  5. Notebook Page
  6. Notebook Operations

Predict

Predict the outcome of a DSL model using the Notebook interface.

PreviousApplying FilterNextArtifacts

Last updated 2 years ago

Check out the walk-through on the Predict option for a DSL Notebook.

Predicting the output of a loaded model

The user can get the predicted array from a loaded DSL model that contains a definite dataframe.

  • Add a new cell.

  • Click the Predict option.

  • Execute the code.

  • Provide the model and dataframe.

  • The predicted output of the given dataframe appears as an array.

  • The default comments on how to define the predicted output for a DS Lab model appears as well.

Please Note: Refer the Data Science Lab Quick Start Flow page to get an overview of the Data Science Lab module in nutshell. Click here to get redirected to the quick start flow page.

Predicting the Output of a loaded DSL model