String Transforms

The String transforms allow users to manipulate textual data, standardize formats, and enrich string columns for analysis or downstream processing.

Add Prefix

Adds a custom text prefix to each value in the selected column(s).

Best Situations to Use

  • Standardize identifiers or codes with common prefixes.

  • Add contextual labels to string columns for feature engineering.

Steps

  1. Select a string column.

  2. Open Transforms > String > Add Prefix.

  3. Enable Output Column Prefix (optional) to create a new column.

  4. Provide the Prefix Value.

  5. Select one or multiple columns to apply.

  6. Click Submit.

Add Suffix

Adds a custom text suffix to each value in the selected column(s).

Best Situations to Use

  • Append units, labels, or contextual text to string columns.

  • Standardize string formatting for reporting or analysis.

Steps

  1. Select a string column.

  2. Open Transforms > String > Add Suffix.

  3. Enable Create New Column (optional).

  4. Provide the Suffix Value.

  5. Select one or multiple columns to apply.

  6. Click Submit.

Change to Lowercase

Converts all values in a column to lowercase.

Best Situations to Use

  • Standardize text for case-insensitive comparisons.

  • Prepare data for text analytics, search, or deduplication.

Steps

  1. Select a string column.

  2. Open Transforms > String > Change to Lowercase.

  3. Enable Create New Column (optional).

  4. Click Submit.

Change to Title Case

Converts values so that the first letter of each word is capitalized.

Best Situations to Use

  • Improve readability and formatting of string data.

  • Standardize proper nouns or textual descriptions.

Steps

  1. Select a string column.

  2. Open Transforms > String > Change to Title Case.

  3. Enable Create New Column (optional) and provide a name.

  4. Click Submit.

Change to Upper Case

Converts all values in a column to uppercase.

Best Situations to Use

  • Standardize text for visual consistency or case-sensitive operations.

  • Prepare data for integration with other systems requiring uppercase text.

Steps

  1. Select a string column.

  2. Open Transforms > String > Change to Upper Case.

  3. Enable Create New Column (optional) and provide a name.

  4. Click Submit.

Note: If Create New Column is not enabled, the original column is modified.

Ends With

Checks if values in a column end with a specified string or pattern, returning a Boolean result.

Best Situations to Use

  • Flag rows with specific suffixes or patterns in string columns.

  • Prepare features for categorical analysis or text filtering.

Steps

  1. Select a string column.

  2. Open Transforms > String > Ends With.

  3. Select Mode: REGEX or String.

  4. Provide New Column Name (if creating a new column).

  5. Enter the value or pattern.

  6. Enable Ignore Case (optional).

  7. Click Submit.

Example: Pattern .*pire in REGEX mode → True for values ending with pire.

Extract Substring at Position

Extracts a substring from a string column based on a starting position and length.

Best Situations to Use

  • Retrieve specific portions of text for analysis or feature engineering.

  • Standardize or parse structured strings.

Steps

  1. Select a string column.

  2. Open Transforms > String > Extract Substring at Position.

  3. Enable Create New Column (optional).

  4. Provide New Column Name.

  5. Specify Position (0-indexed start).

  6. Specify Length of substring.

  7. Click Submit.

Extract Substring before Delimiter

Extracts a substring from a string column before a specified delimiter occurrence.

Best Situations to Use

  • Parse structured strings like CSV, IDs, or codes.

  • Extract leading segments before separators.

Steps

  1. Select a string column with delimiters.

  2. Open Transforms > String > Extract Substring before Delimiter.

  3. Enable Create New Column (optional).

  4. Provide New Column Name.

  5. Specify Delimiter.

  6. Specify the Count of delimiter occurrences.

  7. Click Submit.

Get Domain

Extracts the domain portion of a URL from a string column.

Best Situations to Use

  • Prepare URL data for analytics or aggregation by domain.

  • Feature engineering for web log or traffic analysis.

Steps

  1. Select a URL column.

  2. Open Transforms > String > Get Domain.

  3. Click Submit.

Example: https://www.google.comgoogle.

Get Host

Extracts the host (including subdomains) from a URL column, excluding path and query parameters.

Best Situations to Use

  • Analyze web traffic or sources by host.

  • Separate subdomains for detailed URL-based analytics.

Steps

  1. Select a URL column.

  2. Open Transforms > String > Get Host.

  3. Click Submit.

Example: https://www.google.comwww.google.com

Get Subdomain Name

Extracts the subdomain portion from a URL column.

Best Situations to Use

  • Analyze subdomain-level traffic.

  • Prepare features for web analytics or segmentation.

Steps

  1. Select a URL column.

  2. Open Transforms > String > Get Subdomain Name.

  3. Click Submit.

Example: https://www.google.comwww.

Insert Character

Inserts a custom character at specified positions in a string column. Can update the original column or create a new one.

Best Situations to Use

  • Format codes, IDs, or textual values with prefixes, separators, or markers.

  • Standardize data for integration or display purposes.

Steps

  1. Select a string column.

  2. Open Transforms > String > Insert Character.

  3. Enable Create New Column (optional).

  4. Provide New Column Name.

  5. Specify Position(s) to insert the character (comma-separated for multiple positions).

  6. Enter the Character to insert.

  7. Click Submit.

Example: Insert $ at position 0$value.

Negate Boolean Value

Flips the Boolean values in a column: TrueFalse, FalseTrue.

Best Situations to Use

  • Correct or invert Boolean flags in datasets.

  • Prepare features for conditional logic or ML models.

Steps

  1. Select a Boolean column.

  2. Open Transforms > String > Negate Boolean Value.

  3. Click Submit.

Remove Accents

Removes accented characters from string columns, normalizing text.

Best Situations to Use

  • Standardize multilingual text for comparison or matching.

  • Prepare text for search, NLP, or downstream processing.

Steps

  1. Select a string column.

  2. Open Transforms > String > Remove Accents.

  3. Enable Create New Column (optional).

  4. Click Submit.

Remove Consecutive Characters

Removes repeated characters or whitespace from a column.

Best Situations to Use

  • Normalize text with duplicate characters or spaces.

  • Prepare data for clean textual analysis.

Steps

  1. Select a column.

  2. Open Transforms > String > Remove Consecutive Characters.

  3. Enable Create New Column (optional).

  4. Configure:

    • Separator: Whitespace or Other

    • Custom Repeated Character (if Other is selected)

  5. Click Submit.

Remove Part of Text

Removes a specific substring from a column based on a condition.

Best Situations to Use

  • Delete unwanted patterns or prefixes/suffixes.

  • Standardize text before analysis.

Steps

  1. Select a column.

  2. Open Transforms > String > Remove Part of Text.

  3. Enable Create New Column (optional).

  4. Specify:

    • Operator: contains, equals, starts with, ends with, regex

    • Value: Text or pattern to remove

  5. Click Submit.

Remove Trailing and Leading Characters

Removes leading and trailing characters, including spaces or custom padding characters.

Best Situations to Use

  • Clean text with extraneous padding.

  • Standardize identifiers or codes for processing.

Steps

  1. Select a column.

  2. Open Transforms > String > Remove Trailing and Leading Characters.

  3. Enable Create New Column (optional).

  4. Configure:

    • Padding Character: Space or Other

    • Custom Character (if Other selected)

    • Ignore Case (optional)

  5. Click Submit.

Search & Replace

Searches for a value or pattern in a column and replaces it with another value.

Best Situations to Use

  • Correct inconsistent text entries.

  • Standardize strings before analysis or aggregation.

Steps

  1. Select a column.

  2. Open Transforms > String > Search & Replace.

  3. Enable Create New Column (optional).

  4. Configure:

    • Operator: contains, equals, starts with, ends with, regex

    • Value: Text to search

    • Replace With: Text to replace

    • Overwrite Entire Cell (optional)

  5. Click Submit.

Split String

Splits a column into multiple columns based on a delimiter or specific position.

Best Situations to Use

  • Separate structured text like codes, CSVs, or compound identifiers.

  • Extract multiple components from a single column.

Steps

  1. Select a column.

  2. Open Transforms > String > Split String.

  3. Configure:

    • Use With: Delimiter or Position

    • Delimiter: Character to split on (if selected)

    • Position: Character position to split (if selected)

  4. Click Submit.

Starts With

Checks if values in a column start with a specified string or pattern, returning a Boolean result.

Best Situations to Use

  • Flag rows with specific prefixes or patterns.

  • Prepare features for categorical analysis or filtering.

Steps

  1. Select a string column.

  2. Open Transforms > String > Starts With.

  3. Enable Create New Column (optional).

  4. Configure:

    • Mode: REGEX or String

    • Value: Text or pattern to check

    • Ignore Case (optional)

  5. Click Submit.

Last updated