Data Pipeline
  • Data Pipeline
    • About Data Pipeline
    • Design Philosophy
    • Low Code Visual Authoring
    • Real-time and Batch Orchestration
    • Event based Process Orchestration
    • ML and Data Ops
    • Distributed Compute
    • Fault Tolerant and Auto-recovery
    • Extensibility via Custom Scripting
  • Getting Started
    • Homepage
      • List Pipelines
      • Create
        • Creating a New Pipeline
          • Adding Components to Canvas
          • Connecting Components
            • Events [Kafka and Data Sync]
          • Memory and CPU Allocations
        • Creating a New Job
          • Job Editor Page
          • Task Components
            • Readers
              • HDFS Reader
              • MongoDB Reader
              • DB Reader
              • S3 Reader
              • Azure Blob Reader
              • ES Reader
              • Sandbox Reader
            • Writers
              • HDFS Writer
              • Azure Writer
              • DB Writer
              • ES Writer
              • S3 Writer
              • Sandbox Writer
              • Mongodb Writer
              • Kafka Producer
            • Transformations
          • PySpark Job
          • Python Job
      • List Jobs
      • List Components
      • Delete Orphan Pods
      • Scheduler
      • Data Channel & Cluster Events
      • Trash
      • Settings
    • Pipeline Workflow Editor
      • Pipeline Toolbar
        • Pipeline Overview
        • Pipeline Testing
        • Search Component in Pipelines
        • Push Pipeline (to VCS/GIT)
        • Pull Pipeline
        • Full Screen
        • Log Panel
        • Event Panel
        • Activate/Deactivate Pipeline
        • Update Pipeline
        • Failure Analysis
        • Pipeline Monitoring
        • Delete Pipeline
        • Pipeline Component Configuration
        • Pipeline Failure Alert History
      • Component Panel
      • Right-side Panel
    • Testing Suite
    • Activating Pipeline
    • Monitoring Pipeline
    • Job Monitoring
  • Components
    • Adding Components to Workflow
    • Component Architecture
    • Component Base Configuration
    • Resource Configuration
    • Intelligent Scaling
    • Connection Validation
    • Readers
      • GCS Reader
      • S3 Reader
      • HDFS Reader
      • DB Reader
      • ES Reader
      • SFTP Stream Reader
      • SFTP Reader
      • Mongo DB Reader
        • MongoDB Reader Lite (PyMongo Reader)
        • MongoDB Reader
      • Azure Blob Reader
      • Azure Metadata Reader
      • ClickHouse Reader (Docker)
      • Sandbox Reader
      • Azure Blob Reader (Docker)
    • Writers
      • S3 Writer
      • DB Writer
      • HDFS Writer
      • ES Writer
      • Video Writer
      • Azure Writer
      • ClickHouse Writer (Docker)
      • Sandbox Writer
      • MongoDB Writers
        • MongoDB Writer
        • MongoDB Writer Lite (PyMongo Writer)
    • Machine Learning
      • DSLab Runner
      • AutoML Runner
    • Consumers
      • GCS Monitor
      • Sqoop Executer
      • OPC UA
      • SFTP Monitor
      • MQTT Consumer
      • Video Stream Consumer
      • Eventhub Subscriber
      • Twitter Scrapper
      • Mongo ChangeStream
      • Rabbit MQ Consumer
      • AWS SNS Monitor
      • Kafka Consumer
      • API Ingestion and Webhook Listener
    • Producers
      • WebSocket Producer
      • Eventhub Publisher
      • EventGrid Producer
      • RabbitMQ Producer
      • Kafka Producer
      • Synthetic Data Generator
    • Transformations
      • SQL Component
      • File Splitter
      • Rule Splitter
      • Stored Producer Runner
      • Flatten JSON
      • Pandas Query Component
      • Enrichment Component
      • Mongo Aggregation
      • Data Loss Protection
      • Data Preparation (Docker)
      • Rest Api Component
      • Schema Validator
    • Scripting
      • Script Runner
      • Python Script
        • Keeping Different Versions of the Python Script in VCS
    • Scheduler
    • Alerts
      • Alerts
      • Email Component
  • Custom Components
  • Advance Configuration & Monitoring
    • Configuration
      • Default Component Configuration
      • Logger
    • Data Channel
    • Cluster Events
    • System Component Status
  • Version Control
  • Use Cases
Powered by GitBook
On this page
  • Steps to Configure the GCS Reader Component
  • Basic Information
  • Steps to configure the meta information of GCS Reader
  1. Components
  2. Readers

GCS Reader

PreviousReadersNextS3 Reader

Last updated 1 year ago

GCS Reader component typically designed to read data from Google Cloud Storage (GCS), which is a cloud-based object storage service provided by Google Cloud Platform. A GCS Reader can be a part of an application or system that needs to access data stored in GCS buckets. It allows you to retrieve, read, and process data from GCS, making it accessible for various use cases, such as data analysis, data processing, backups, and more.

GCS Reader pulls data from the GCS Monitor, so the first step is to implement .

Note: The users can refer to the section of this document for the details.

All component configurations are classified broadly into the following sections:

  • Meta Information

  • ​

Steps to Configure the GCS Reader Component

  • Navigate to the Pipeline Workflow Editor page for an existing pipeline workflow with GCS Monitor and Event component.

  • Open the Reader section of the Component Pallet.

  • Drag the GCS Reader to the Workflow Editor.

  • Click on the dragged GCS Reader component to get component properties tabs below.

Basic Information

It is the default tab to open for the component while configuring it.

  • Invocation Type: Select an invocation mode out of ‘Real-Time’ or ‘Batch’ using the drop-down menu.

  • Deployment Type: It displays the deployment type for the reader component. This field comes pre-selected.

  • Container Image Version: It displays the image version for the docker container. This field comes pre-selected.

  • Failover Event: Select a failover Event from the drop-down menu.

  • Batch Size (min 10): Provide the maximum number of records to be processed in one execution cycle (Min limit for this field is 10).

Steps to configure the meta information of GCS Reader

  • Bucket Name: Enter the Bucket name for GCS Reader. A bucket is a top-level container for storing objects in GCS.

  • Directory Path: Enter the path where the file is located, which needs to be read.

  • File Name: Enter the file name.

GCS Monitor
GCS Monitor
​Basic Information​
Resource Configuration​
Configuring GCS Reader in pipeline workflow
Basic information tab
Meta information tab of GCS Reader